ETV5 Regulates Sertoli Cell Chemokines Involved in Mouse Stem/Progenitor Spermatogonia Maintenance
نویسندگان
چکیده
Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to offspring. Although growth factors responsible for self-renewal of these cells are known, the factors and mechanisms that attract and physically maintain these cells within their microenvironment are poorly understood. Mice with targeted disruption of Ets variant gene 5 (Etv5) show total loss of stem/progenitor spermatogonia following the first wave of spermatogenesis, resulting in a Sertoli cell-only phenotype and aspermia. Microarray analysis of primary Sertoli cells from Etv5 knockout (Etv5(-/-)) versus wild-type (WT) mice revealed significant decreases in expression of several chemokines. Chemotaxis assays demonstrated that migration of stem/progenitor spermatogonia toward Etv5(-/-) Sertoli cells was significantly decreased compared to migration toward WT Sertoli cells. Interestingly, differentiating spermatogonia, spermatocytes, and round spermatids were not chemoattracted by WT Sertoli cells, whereas stem/progenitor spermatogonia showed a high and significant chemotactic index. Rescue assays using recombinant chemokines indicated that C-C-motif ligand 9 (CCL9) facilitates Sertoli cell chemoattraction of stem/progenitor spermatogonia, which express C-C-receptor type 1 (CCR1). In addition, there is protein-DNA interaction between ETV5 and Ccl9, suggesting that ETV5 might be a direct regulator of Ccl9 expression. Taken together, our data show for the first time that Sertoli cells are chemoattractive for stem/progenitor spermatogonia, and that production of specific chemokines is regulated by ETV5. Therefore, changes in chemokine production and consequent decreases in chemoattraction by Etv5(-/-) Sertoli cells helps to explain stem/progenitor spermatogonia loss in Etv5(-/-) mice.
منابع مشابه
Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis.
Mice that are ets variant gene 5 (ETV5) null (Etv5(-/-)) undergo the first wave of spermatogenesis but lose all spermatogonial stem cells (SSCs) during this time. The SSC loss in Etv5(-/-) mice begins during the neonatal period, suggesting a role for ETV5 in SSC self-renewal during this period. Herein, we show that Etv5 mRNA was present in perinatal mouse testis and that ETV5 was expressed in f...
متن کاملA Missense Mutation in the Transcription Factor ETV5 Leads to Sterility, Increased Embryonic and Perinatal Death, Postnatal Growth Restriction, Renal Asymmetry and Polydactyly in the Mouse
ETV5 (Ets variant gene 5) is a transcription factor that is required for fertility. In this study, we demonstrate that ETV5 plays additional roles in embryonic and postnatal developmental processes in the mouse. Through a genome-wide mouse mutagenesis approach, we generated a sterile mouse line that carried a nonsense mutation in exon 12 of the Etv5 gene. The mutation led to the conversion of l...
متن کاملRetinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium
Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, w...
متن کاملDMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment
Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial ste...
متن کاملAn Efficient In Vitro Culture System To Amplify Spermatogonia Stem Cell Markers
Background: Proliferation of spermatogonial stem cells (SSCs) can be a treatment for infertile men. Here, we design an efficient method based on culturing in the presence of Sertoli cells to improve the expression level of some specific spermatogonia stem cell genes during two weeks post culture. Materials and Methods: Cells were derived from neonatal (2-6 days old) mice testes and were cultur...
متن کامل